Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Bifurcation of 2-periodic orbits from non-hyperbolic fixed points

Autor
Cima, A.; Gasull, A.; Mañosa, V.
Tipus d'activitat
Document cientificotècnic
Data
2017-07-21
Codi
arXiv:1707.06404 [math.DS]
Projecte finançador
Control, dinàmica i aplicacions
Histeresis con dependencia de tasa: modelado, análisis, e identificación, con aplicaciones a los amortiguadores magnetoreologicos
Repositori
http://hdl.handle.net/2117/106815 Obrir en finestra nova
URL
https://arxiv.org/abs/1707.06404 Obrir en finestra nova
Resum
We introduce the concept of 2-cyclicity for families of one-dimensional maps with a non-hyperbolic fixed point by analogy to the cyclicity for families of planar vector fields with a weak focus. This new concept is useful in order to study the number of 2-periodic orbits that can bifurcate from the fixed point. As an application we study the 2-cyclicity of some natural families of polynomial maps.
Citació
Cima, A., Gasull, A., Mañosa, V. "Bifurcation of 2-periodic orbits from non-hyperbolic fixed points". 2017.
Paraules clau
2-periodic points, Bifurcation, Cyclicity, Non-hyperbolic fixed points
Grup de recerca
CoDAlab - Control, Modelització, Identificació i Aplicacions

Participants

Arxius