Vés al contingut (premeu Retorn)

An algebraic approach to lifts of digraphs

Fiol, M.; Dalfo, C.; Miller, M.; Ryan, J.; Siran, J.
Tipus d'activitat
Presentació treball a congrés
Nom de l'edició
Algebraic and Extremal Graph Theory Conference 2017
Any de l'edició
Data de presentació
Llibre d'actes
Algebraic and Extremal Graph Theory: a conference in honor of W. Haemers, F. Lazebnik, and A. Woldar): Delaware, USA: august 7-10, 2017: book of abstracts
Pàgina inicial
Pàgina final
We study the relationship between two key concepts in the theory of (di)graphs: the quotient digraph, and the lift $\Gamma^\alpha$ of a base (voltage) digraph. These techniques contract or expand a given digraph in order to study its characteristics, or obtain more involved structures. This study is carried out by introducing a quotient-like matrix, with complex polynomial entries, which fully represents $\Gamma^\alpha$. In particular, such a matrix gives the quotient matrix of a regular partit...
Paraules clau
Abelian group, Digraph, adjacency matrix, generalized Petersen graph., lifted digraph, quotient digraph, regular partition, spectrum, voltage digraphs
Grup de recerca
COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions