For k¿=¿2, a strongly connected digraph D is called -connected if it contains a set of arcs W such that contains at least k non-trivial strong components. The k-restricted arc connectivity of a digraph D was defined by Volkmann as . In this paper we bound for a family of bipartite tournaments T called projective bipartite tournaments. We also introduce a family of “good” bipartite oriented digraphs. For a good bipartite tournament T we prove that if the minimum degree of T is at least t...
For k¿=¿2, a strongly connected digraph D is called -connected if it contains a set of arcs W such that contains at least k non-trivial strong components. The k-restricted arc connectivity of a digraph D was defined by Volkmann as . In this paper we bound for a family of bipartite tournaments T called projective bipartite tournaments. We also introduce a family of “good” bipartite oriented digraphs. For a good bipartite tournament T we prove that if the minimum degree of T is at least then where N is the order of the tournament. As a consequence, we derive better bounds for circulant bipartite tournaments.
Citation
Balbuena, C., González, D., Olsen, M. Bounds on the k-restricted arc connectivity of some bipartite tournaments. "Applied mathematics and computation", 15 Agost 2018, vol. 331, p. 54-60.