Loading...
Loading...

Go to the content (press return)

A superconvergent hybridisable discontinuous Galerkin method for linear elasticity

Author
Sevilla, R.; Giacomini, M.; Karkoulias, A.; Huerta, A.
Type of activity
Journal article
Journal
International journal for numerical methods in engineering
Date of publication
2018-10-12
Volume
116
Number
2
First page
91
Last page
116
DOI
https://doi.org/10.1002/nme.5916 Open in new window
Repository
http://hdl.handle.net/2117/123467 Open in new window
URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5916?af=R Open in new window
Abstract
The first superconvergent hybridisable discontinuous Galerkin method for linear elastic problems capable of using the same degree of approximation for both the primal and mixed variables is presented. The key feature of the method is the strong imposition of the symmetry of the stress tensor by means of the well known and extensively used Voigt notation, circumventing the use of complex mathematical concepts to enforce the symmetry of the stress tensor either weakly or strongly. A novel procedur...
Citation
Sevilla, R., Giacomini, M., Karkoulias, A., Huerta, A. A superconvergent hybridisable discontinuous Galerkin method for linear elasticity. "International journal for numerical methods in engineering", 12 Octubre 2018, vol. 116, núm. 2, p. 91-116.
Keywords
Elasticity, Hybridisable discontinuous Galerkin, Locking-free, Mixed formulation, Super-convergence, Voigt notation
Group of research
LACÀN - Numerical Methods for Applied Sciences and Engineering

Participants