Carregant...
Carregant...

Vés al contingut (premeu Retorn)

Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem

Autor
Gasull, A.; Mañosa, V.
Tipus d'activitat
Document cientificotècnic
Data
2018-09-17
Codi
arXiv:1809.06208v1 [math.DS]
Projecte finançador
Histeresis con dependencia de tasa: modelado, análisis, e identificación, con aplicaciones a los amortiguadores magnetoreologicos
Repositori
http://hdl.handle.net/2117/122722 Obrir en finestra nova
URL
https://arxiv.org/abs/1809.06208 Obrir en finestra nova
Resum
We present a systematic methodology to determine and locate analytically isolated periodic points of discrete and continuous dynamical systems with algebraic nature. We apply this method to a wide range of examples, including a one-parameter family of counterexamples to the discrete Markus-Yamabe conjecture (La Salle conjecture); the study of the low periods of a Lotka-Volterra-type map; the existence of three limit cycles for a piece-wise linear planar vector field; a new counterexample of Kou...
Citació
Gasull, A., Mañosa, V. "Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem". 2018.
Paraules clau
Central configurations, Discrete Markus-Yamabe conjecture, Discrete and continuous dynamical systems, Kouchnirenko’s conjecture, Limit cycles, Lotka-Volterra maps, Periodic orbits, Planar piecewise linear systems, Poincaré-Miranda Theorem, Thue-Morse maps
Grup de recerca
CoDAlab - Control, Modelització, Identificació i Aplicacions

Participants

Arxius