Analysis of class C G-Protein Coupled Receptors using supervised classification methods
Tipus d'activitat
Tesi doctoral
Altres unitats relacionades
Departament de Ciències de la Computació
Data de la defensa
2018-10-30
Resum
Los receptores acoplados a proteínas G (GPCRs) son proteínas de la membrana celular con un papel clave para la regulación del funcionamiento de una célula. Esto es consecuencia de su capacidad de transmisión de señales extracelulares, lo que les hace relevante en la farmacología y que ha llevado a investigaciones activas en la última década en el área de la proteómica. Esta tesis se centra específicamente en la clase C de GPCRs, que son relevante para terapias de varios trastornos de...
Los receptores acoplados a proteínas G (GPCRs) son proteínas de la membrana celular con un papel clave para la regulación del funcionamiento de una célula. Esto es consecuencia de su capacidad de transmisión de señales extracelulares, lo que les hace relevante en la farmacología y que ha llevado a investigaciones activas en la última década en el área de la proteómica. Esta tesis se centra específicamente en la clase C de GPCRs, que son relevante para terapias de varios trastornos del sistema nervioso central, como la enfermedad de Alzheimer, ansiedad, enfermedad de Parkinson y esquizofrenia. La investigación de la funcionalidad de proteínas muchas veces se basa en el conocimiento de la estructura cristalina tridimensional (3-D), que determina la capacidad del receptor para la unión con ligandos, que son responsables para la activación de ciertas funcionalidades en la proteína. El análisis de secuencias de amino ácidos se ha centrado en muchas investigaciones en el análisis cuantitativo de las versiones alineados de las secuencias, aunque, recientemente, se han propuesto métodos alternativos usando métodos de aprendizaje automático aplicados a las versiones no-alineadas de las secuencias. En esta tesis, nos centramos en la diferenciación de los GPCRs de la clase C en subgrupos funcionales y estructurales basado en el análisis de las secuencias no-alineadas utilizando modelos de clasificación supervisados. Estos modelos son útiles para evaluar la calidad interna de los datos a partir del conjunto de datos etiquetados externamente y para gestionar el problema del 'ruido de datos' desde la perspectiva de la curación de datos. En su segunda parte, la tesis enfoca el análisis de las secuencias para descubrir motivos de secuencias específicos a nivel de subtipo o región. Para eso, llevamos a cabo un análisis sistemático de los segmentos topológicos de la secuencia con modelos supervisados de clasificación y evaluamos la capacidad de discriminar entre subtipos de cada región. Adicionalmente, aplicamos diferentes tipos de técnicas de selección de atributos a las representaciones mediante n-gramas de los segmentos de secuencias de amino ácidos para encontrar motivos específicos a nivel de subtipo y región. Finalmente, comparamos los descubrimientos de la búsqueda de motivos con las estructuras cristalinas parcialmente conocidas para la clase C de GPCRs.