Given a connected graph G and an integer 1¿=¿p¿=¿¿|V(G)|/2¿, a p-restricted edge-cut of G is any set of edges S¿¿¿E(G), if any, such that is not connected and each component of has at least p vertices; and the p-restricted edge-connectivity of G, denoted ¿p(G), is the minimum cardinality of such a p-restricted edge-cut. When p-restricted edge-cuts exist, G is said to be super-¿p if the deletion from G of any p-restricted edge-cut S of cardinality ¿p(G) yields a graph that has at leas...
Balbuena, C.; Marcote, F. The p-restricted edge-connectivity of Kneser graphs. "Applied mathematics and computation", 15 Febrer 2019, vol. 343, p. 258-267.