Loading...
Loading...

Go to the content (press return)

Deep Learning Q-Vision

Type of activity
Competitive project
Funding entity
AGAUR. Agència de Gestió d'Ajuts Universitaris i de Recerca
Funding entity code
2019 DI 040
Amount
33.960,00 €
Start date
2019-09-01
End date
2022-09-01
Abstract
This project is about the automated surface inspection tunnels that are realized during the Painting Process of the car. It is important that the surface is exactly analysed by high quality technologies. This is done with the help of sensor data, video recordings and photocompositions that take about 27.000 pictures to get a precise analyse regarding brightness, tone and saturation.
Due to new technologies like Artifical Intelligence, Machine Learning, Deep Learning and Computer Vision, the painting process can be improved and higher quality results can be achieved.
The aim of this project of investigation is to reduce quality surface defects. The diagnosis process will be automatized and digitalized, so that the availability and optimization of the maintenance of Paint Shop Installations will finally be improved.
Scope
Adm. Generalitat
Plan
Estratègia de recerca i innovació per a l'especialització intel·ligent de Catalunya (RIS3CAT)
Call year
2019
Funcding program
RIS3CAT
Funding call
Doctorats Industrials
Grant institution
Agència De Gestió D'ajuts Universitaris I De Recerca (agaur)

Participants