Loading...
Loading...

Go to the content (press return)

On the ASD conjecture

Author
Llado, A.; Moragas, J.
Type of activity
Presentation of work at congresses
Name of edition
VII Jornadas de Matemática Discreta y Algorítmica
Date of publication
2010
Presentation's date
2010-06-10
Book of congress proceedings
VII Jornadas Matemática Discreta y Algorítmica : libro de actas
First page
409
Last page
423
Repository
http://hdl.handle.net/2117/11263 Open in new window
URL
http://www.jmda2010.unican.es/Librodeactas.pdf Open in new window
Abstract
Let G be a graph of size ($\displaystyle\frac{n+1}{2}$) for some integer n ≥ 1. G is said to have an ascending subgraph decomposition (ASD) if can be decomposed into n subgraphs H1, . . . ,Hn such that Hi has i edges and is isomorphic to a subgraph of Hi+1, i = 1, . . . , n−1. In this work we deal with ascending subgraph decompositions of bipartite graphs. In order to do so, we consider ascending subgraph decompositions in which each factor is a forest of stars. We show that every bipartite ...
Citation
Llado, A.; Moragas, J. On the ASD conjecture. A: VII Jornadas de Matemática Discreta y Algorítmica. "VII Jornadas de Matemática Discreta y Algorítmica". Castro Urdiales: 2010, p. 409-423.
Keywords
Graph decomposition, ascending matrix, edge-coloring, sumset partition problem
Group of research
COMBGRAPH - Combinatorics, Graph Theory and Applications
GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics

Participants