Loading...
Loading...

Go to the content (press return)

The proportional coalitional Shapley value

Author
Alonso, J.; Carreras, F.
Type of activity
Journal article
Journal
Expert systems with applications
Date of publication
2011-06
Volume
38
Number
6
First page
6967
Last page
6979
DOI
https://doi.org/10.1016/j.eswa.2010.12.018 Open in new window
Repository
http://hdl.handle.net/2117/12035 Open in new window
URL
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V03-51PRY5V-5&_user=1517299&_coverDate=06%2F30%2F2011&_rdoc=66&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info%28%23toc%235635%232011%23999619993%232905747%23FLA%23display%23Volume%29&_cdi=5635&_sort=d&_docanchor=&_ct=169&_acct=C000053450&_version=1&_urlVersion=0&_userid=1517299&md5=db01348d36f67c1b62d01772f6281a07&searchtype=a Open in new window
Abstract
We propose a modification of the Shapley value for monotonic games with a coalition structure. The resulting coalitional value is a twofold extension of the Shapley value in the following sense: (1) the amount obtained by any union coincides with the Shapley value of the union in the quotient game; and (2) the players of the union share this amount proportionally to their Shapley value in the original game (i.e., without unions). We provide axiomatic characterizations of this value close to thos...
Citation
Alonso Meijide, J.M.; Carreras, F. The proportional coalitional Shapley value. "Expert systems with applications", Juny 2011, vol. 38, núm. 6, p. 6967-6979.
Group of research
GRTJ - Game Theory Research Group

Participants